Affiliation:Â Assistant professor at the Technical University Delft
Place:Â Large Lecture Room
Abstract
The design of filter layers in a CNNs is a matter of trail and error where the filter-size in a single layer is typically hard-coded. Here I question this design. Instead of hard-coding we aim to learn the resolution. We do this by coupling resolution to the standard deviation of a Gaussian blur kernel, and then learn CNN filters by learning coefficients of a local differential Gaussian basis. Preliminary results show that global resolution can be learned by optimizing the standard deviation, and –in contrast to pixel filters CNNs– is robust to changing scales.
Picture:Â